在本文中,我们考虑了在具有多个自动机器人的系统中分配人类操作员协助的问题。每个机器人都需要完成独立任务,每个任务定义为一系列任务。在执行任务时,机器人可以自主操作,也可以由人类操作员远程执行,以更快地完成任务。我们表明,创建详细时间表的问题使系统的制造量最小化是NP-HARD。我们将问题提出为混合整数线性程序,可用于最佳地解决小到中等大小的问题实例。我们还开发了一种随时随地的算法,该算法利用问题结构来提供对操作员调度问题的快速和高质量解决方案,即使对于更大的问题实例也是如此。我们的关键见解是在贪婪创建的时间表中识别阻止任务,并迭代地删除这些块以提高解决方案的质量。通过数值模拟,我们证明了所提出的算法的好处是一种高于其他贪婪方法的有效且可扩展的方法。
translated by 谷歌翻译
在本文中,我们研究了众所周知的团队导演问题,其中一批机器人通过访问地点收集奖励。通常,假设奖励是机器人已知的;但是,在环境监测或场景重建的应用中,奖励通常是主观的,并指定它们是具有挑战性的。我们提出了一个框架来通过向它们呈现替代解决方案来学习用户的未知偏好,并且用户在所提出的替代解决方案上提供排名。我们考虑了用户的两种情况:1)确定替代解决方案的最佳排名的确定性用户,以及根据未知概率分布提供最佳排名的噪声用户。对于确定性用户,我们提出了一个框架,以最大限度地减少与最佳解决方案的最大偏差的界限,即后悔。我们适应捕获嘈杂用户的方法,并最大限度地减少预期的遗憾。最后,我们展示了学习用户偏好的重要性以及在广泛的实验结果中使用真实的世界数据集进行环境监测问题的大量实验结果的性能。
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
This contribution demonstrates the feasibility of applying Generative Adversarial Networks (GANs) on images of EPAL pallet blocks for dataset enhancement in the context of re-identification. For many industrial applications of re-identification methods, datasets of sufficient volume would otherwise be unattainable in non-laboratory settings. Using a state-of-the-art GAN architecture, namely CycleGAN, images of pallet blocks rotated to their left-hand side were generated from images of visually centered pallet blocks, based on images of rotated pallet blocks that were recorded as part of a previously recorded and published dataset. In this process, the unique chipwood pattern of the pallet block surface structure was retained, only changing the orientation of the pallet block itself. By doing so, synthetic data for re-identification testing and training purposes was generated, in a manner that is distinct from ordinary data augmentation. In total, 1,004 new images of pallet blocks were generated. The quality of the generated images was gauged using a perspective classifier that was trained on the original images and then applied to the synthetic ones, comparing the accuracy between the two sets of images. The classification accuracy was 98% for the original images and 92% for the synthetic images. In addition, the generated images were also used in a re-identification task, in order to re-identify original images based on synthetic ones. The accuracy in this scenario was up to 88% for synthetic images, compared to 96% for original images. Through this evaluation, it is established, whether or not a generated pallet block image closely resembles its original counterpart.
translated by 谷歌翻译
Earthquakes, fire, and floods often cause structural collapses of buildings. The inspection of damaged buildings poses a high risk for emergency forces or is even impossible, though. We present three recent selected missions of the Robotics Task Force of the German Rescue Robotics Center, where both ground and aerial robots were used to explore destroyed buildings. We describe and reflect the missions as well as the lessons learned that have resulted from them. In order to make robots from research laboratories fit for real operations, realistic test environments were set up for outdoor and indoor use and tested in regular exercises by researchers and emergency forces. Based on this experience, the robots and their control software were significantly improved. Furthermore, top teams of researchers and first responders were formed, each with realistic assessments of the operational and practical suitability of robotic systems.
translated by 谷歌翻译
The Me 163 was a Second World War fighter airplane and a result of the German air force secret developments. One of these airplanes is currently owned and displayed in the historic aircraft exhibition of the Deutsches Museum in Munich, Germany. To gain insights with respect to its history, design and state of preservation, a complete CT scan was obtained using an industrial XXL-computer tomography scanner. Using the CT data from the Me 163, all its details can visually be examined at various levels, ranging from the complete hull down to single sprockets and rivets. However, while a trained human observer can identify and interpret the volumetric data with all its parts and connections, a virtual dissection of the airplane and all its different parts would be quite desirable. Nevertheless, this means, that an instance segmentation of all components and objects of interest into disjoint entities from the CT data is necessary. As of currently, no adequate computer-assisted tools for automated or semi-automated segmentation of such XXL-airplane data are available, in a first step, an interactive data annotation and object labeling process has been established. So far, seven 512 x 512 x 512 voxel sub-volumes from the Me 163 airplane have been annotated and labeled, whose results can potentially be used for various new applications in the field of digital heritage, non-destructive testing, or machine-learning. This work describes the data acquisition process of the airplane using an industrial XXL-CT scanner, outlines the interactive segmentation and labeling scheme to annotate sub-volumes of the airplane's CT data, describes and discusses various challenges with respect to interpreting and handling the annotated and labeled data.
translated by 谷歌翻译
Deep Reinforcement Learning (RL) agents are susceptible to adversarial noise in their observations that can mislead their policies and decrease their performance. However, an adversary may be interested not only in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper presents a metric that measures the exact impact of adversarial attacks against such properties. We use this metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to concisely assess a system's robustness against attacks.
translated by 谷歌翻译
Any quantum computing application, once encoded as a quantum circuit, must be compiled before being executable on a quantum computer. Similar to classical compilation, quantum compilation is a sequential process with many compilation steps and numerous possible optimization passes. Despite the similarities, the development of compilers for quantum computing is still in its infancy-lacking mutual consolidation on the best sequence of passes, compatibility, adaptability, and flexibility. In this work, we take advantage of decades of classical compiler optimization and propose a reinforcement learning framework for developing optimized quantum circuit compilation flows. Through distinct constraints and a unifying interface, the framework supports the combination of techniques from different compilers and optimization tools in a single compilation flow. Experimental evaluations show that the proposed framework-set up with a selection of compilation passes from IBM's Qiskit and Quantinuum's TKET-significantly outperforms both individual compilers in over 70% of cases regarding the expected fidelity. The framework is available on GitHub (https://github.com/cda-tum/MQTPredictor).
translated by 谷歌翻译
People are not very good at detecting lies, which may explain why they refrain from accusing others of lying, given the social costs attached to false accusations - both for the accuser and the accused. Here we consider how this social balance might be disrupted by the availability of lie-detection algorithms powered by Artificial Intelligence. Will people elect to use lie detection algorithms that perform better than humans, and if so, will they show less restraint in their accusations? We built a machine learning classifier whose accuracy (67\%) was significantly better than human accuracy (50\%) in a lie-detection task and conducted an incentivized lie-detection experiment in which we measured participants' propensity to use the algorithm, as well as the impact of that use on accusation rates. We find that the few people (33\%) who elect to use the algorithm drastically increase their accusation rates (from 25\% in the baseline condition up to 86% when the algorithm flags a statement as a lie). They make more false accusations (18pp increase), but at the same time, the probability of a lie remaining undetected is much lower in this group (36pp decrease). We consider individual motivations for using lie detection algorithms and the social implications of these algorithms.
translated by 谷歌翻译
This work aims at showing that it is feasible and safe to use a swarm of Unmanned Aerial Vehicles (UAVs) indoors alongside humans. UAVs are increasingly being integrated under the Industry 4.0 framework. UAV swarms are primarily deployed outdoors in civil and military applications, but the opportunities for using them in manufacturing and supply chain management are immense. There is extensive research on UAV technology, e.g., localization, control, and computer vision, but less research on the practical application of UAVs in industry. UAV technology could improve data collection and monitoring, enhance decision-making in an Internet of Things framework and automate time-consuming and redundant tasks in the industry. However, there is a gap between the technological developments of UAVs and their integration into the supply chain. Therefore, this work focuses on automating the task of transporting packages utilizing a swarm of small UAVs operating alongside humans. MoCap system, ROS, and unity are used for localization, inter-process communication and visualization. Multiple experiments are performed with the UAVs in wander and swarm mode in a warehouse like environment.
translated by 谷歌翻译